
Acknowledgements
PK would like to acknowledge a support from the Spanish Min-
istry of Education and Science via grant BES-2006-11506.

References

[K+06] P. Kubánek et al. RTS2: a powerful robotic observatory
manager. In Advanced Software and Control for Astron-
omy. Proceedings of the SPIE, Volume 6274, pp. 62741V
(2006)., July 2006.

[Kub08] P. Kubánek. RTS2 - Lessons learned from a widely
distributed telescope network. 2008. Submitted to As-
tronomische Nachrichten.

[S+07] K. G. Strassmeier et al. Telescope and instrument roboti-
zation at Dome C. Astronomische Nachrichten, 328:451,
July 2007.

Figure 4: Problems
areas for robotic telescopes

Of course these computational overheads are negligible and remain un-
noticed when the system is acquiring new images at the rate of one every
few seconds. But when the images are acquired at the rate of several
frames per second, these delays become significant.

We would like to see the development of an open–source, well docu-
mented image processing library, which will provide all the functional-
ity currently provided by IRAF (and other similar packages), but allows
this functionality to be easily accessed from either C/C++ or some other
higher level language (e.g. Python).

Figure 5: Network observations scheduling dialog

Figure 3: Sample GRB information dialog

4. Web Interface for RT
The RTS2 web interface is based on the thin client idea. Data is taken
from a PostgreSQL database used by RTS2. Display is provided by Java
servlets running on an Apache Tomcat server and a couple of Java cus-
tom classes. Graphical user interface uses Java-Script client-side frame-
work Ext. The graphical user interface uses the Java-Script client-side
framework Ext. The communication between server and client side is
asynchronous, using XML as the message format (AJAX).

The web client can also offer limited control over the devices and servers
controlled by RTS2. A SOAP server, part of RTS2, is used to pass com-
mands from the servlets.

5. Image processing library
Currently, image processing in RTS2 is performed by calling a shell
script. The script consists of calls to various image processing routines,
utilising either independent binaries or routines in IRAF, Octave or other
image processing environments.

While that approach works, it adds a significant processing load on the
system when the program is initialised. As the script subroutines are
independent programs, each must open a FITS file where the image is
stored, call parsing routines, parse the FITS file, do some computation
and store the resulting image. Even with the improved performance of
modern operating systems, achieved by caching data in memory as much
as possible to avoid accessing data from hard drives (or other slow I/O
channel) unless absolutely necessary, significant computational costs as-
sociated with the parsing of image meta–data remain.

Figure 2: Web Interface design

3. Global RT planner and scheduler
GRBs and other target–of–opportunity (TOO) observations have
an important common aspect – it is essential to minimise any de-
lay in commencing observations. In the case of GRB observa-
tions, every minute can make a difference between obtaining data
with a detection of an optical transient, or only an upper limit.
The strategy observers usually follow is to obtain rapid response
data with small robotic telescopes, and once an optical counter-
part has been identified, trigger their TOO observing programmes
on larger telescopes.

When a GRB observer is making a decision which instruments
can be used to further study the GRB in question, he should be
presented with:

the most up–to–date information about GRB, including its po-
sition and brightness in various bands, with a prediction of its
future brightness. An estimation of the redshift is highly desir-
able.

the on–going observations of the event, so he/she can choose
the best possible strategy for ongoing observations.

TOO triggering details, e.g. how to trigger an observation, whom
to contact, how many triggers are left. In an ideal world, this in-
formation would be shared among other GRB observers, but the
highly competitive nature of the GRB field of research precludes
easy access to such information.

This data must be presented in a quick, efficient, and clear manner.
Thus, the development of our own GUI, or sophisticated AJAX
elements, appears to be a potentially good solution. Drafts of the
information dialog boxes are presented in figures 3 and 5.

6. Java astronomical calculation library
RTS2 uses Libnova, an open source celestial mechanics, astrometry and
astrodynamics library. Libnova provides RTS2 with all its calculus ma-
chinery. Precise calculations of lunar and planetary positions require
thousands of lines of source code. As we are developing our new WWW
user interface as a Java servlets application, we would like to have a pure
Java solution to compute various target properties, and display target in-
formation on the web page.

Libnova can provide us with that information, but as it is written in C
and is not object–oriented, it will be very difficult to use it in Java. We
believe that converting the C Libnova library to a Java library by using a
Java Native Interface (JNI) will result in a pseudo object–oriented library,
which we think is not worth the effort.

Ideally we would like to have the precision and stability of Libnova coded
natively in an object-oriented manner in Java. According to our esti-
mates, this task would require one to two months of design, and about
the same for both development and testing, and so can be completed in
approximately six months.

The first goal established during the development of RTS2 was to
properly obtain and save CCD images. Subsequent features added
to the system allowed for observation management, GRB follow–
up observations, image processing, human interaction and moni-
toring of the system performance, and presentation of results. The
progress and results achieved are described in [K+06].

One of the bottlenecks in RTS2 development is the lack of a cen-
tral observatory network manager, and thus a central scheduling
and management ability. This problem is described and possible
solutions are discussed in [Kub08], and outlined in figure 1.

The second bottleneck is the interface that enables the user to in-
teract with the system. We lack a proper GUI (Graphical User
Interface), which will enable end users to enter, manage, check
and access the observations.

Although we have a scheduler, we are not completely satisfied
with its results, and we are looking for a proper scheduler which
will allow for improved scheduling of observation runs.

2. Robotic telescope software
Robotic telescope software is a specialised product. For large
projects, software is included in expected costs of the telescope,
and is usually developed as a fully customised system using ex-
isting components. Some automation is included in every large
project. But due to costs, requirements, and expected complex-
ity, only a few large project telescopes are designed as fully au-
tonomous, operating without any human control, and intelligently
following targets which appears during the night.

In agreement with the 90/10 rule of software development, ba-
sic remote telescope operation, which simply allows an observer
to remotely carry out observations, comprises 90% of the soft-
ware’s functionality while requiring just 10% of the development
effort. Fully autonomous observation, which completely replaces
the human observer in the control loop and makes autonomous
decisions based on obtained images, is the last 10% of desired
observatory functionality, but due to the significant complexity of
the task it can require 90% of development effort to implement.
This estimate is supported by evidence in [S+07].

We aim to develop software for all astronomers, amateur or pro-
fessional, observers of GRBs or solar system bodies. Creating
a fully featured observatory manager, independent of device and
operation system selection, will allow the robotic telescope com-
munity to grow and contribute significant results over the coming
years. If such a software base is not available, newcomers to the
field will waste time and effort on ”reinventing the wheel”, instead
of adding new functionalities to an existing system.

Over the past number of years, we have established a collabora-
tion of astronomers interested in using robotic telescopes. The
collaboration uses the RTS2 (Remote Telescope Software) pack-
age, a robotic observatory manager, to control their systems. RTS2
is designed as a modular observatory manager. Parts of the system
can be added or removed at any time without affecting observa-
tory operation.

Fully robotic telescopes are carrying out a growing number of
tasks. The majority of them are focused on Gamma-ray Burst
(GRB) follow-ups. This is a field where their speed and precision
provide siginficant advantages over human controlled observer-
vations. The amount of data is significantly reduced by satellite
trigger informations.

1. Introduction

Figure 1: Telescope network topics

We have spent a considerable amount of time developing, installing and monitoring an open–source package for observatory control,
primarily aimed at fast GRB follow–up observations. We have integrated some image processing steps inside our observatory control
system and have obtained and published interesting results. But we know we currently miss a lot of interesting events.

There are many desired features missing from our software. As we cannot find any commercially available solutions for these, we
develop our own solutions. This is of course more solutions for those, we develop our own solutions. That is of course more difficult
then using an available one. The list includes pure Java astronomical calculation library, a web interface for robotic telescope (RT), a
global RT planner and scheduler with a display of the instrument’s status and the observations. All items are presented in this poster.

Petr Kubánek (1,2), Stanislav Vı́tek (2), John French (3), Alberto Castro–Tirado (2), Martin Jelı́nek (2) and Martin Nekola (4)

(1) GACE, Universidad de Valencia, Spain (2) IAA-CSIC Granada, Spain (3) University College Dublin, Dublin, Ireland (4) Astronomický ústav Akademie věd České republiky, Fričova, Ondřejov, Czech Republic

Additional Software Required for Robotic Telescopes


